5.2 Modelo Naive


\[ \operatorname{PRICE} = \alpha + \beta_{1}(\operatorname{HEIGHT}) + \beta_{2}(\operatorname{WIDTH}) + \beta_{3}(\operatorname{SIGNED}) + \beta_{4}(\operatorname{HOUSE}) + \epsilon \]
Observations 430
Dependent variable PRICE
Type OLS linear regression
F(4,425) 24.39
0.19
Adj. R² 0.18
Est. S.E. t val. p
(Intercept) -5.52 1.09 -5.05 0.00
HEIGHT 0.09 0.02 4.18 0.00
WIDTH 0.11 0.02 5.29 0.00
SIGNED 2.29 0.50 4.56 0.00
HOUSE 0.39 0.33 1.19 0.24
Standard errors: OLS

\[ \operatorname{PRICE} = -5.52 + 0.09(\operatorname{HEIGHT}) + 0.11(\operatorname{WIDTH}) + 2.29(\operatorname{SIGNED}) + 0.39(\operatorname{HOUSE}) + \epsilon \]